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A STUDY OF SECOND-ORDER SUPERSONIC FLOW THEORY

By MILTOND. .VANDYKE1

SUMMARY

.in attempt is nude to derdop a second apprcwirnation to tie
xolution of probkms of wqwrmnic jaw trhich can be solced by

K.&?&h~ $r8t-OIder theon~. Z4e method of attack adopted is an
iteration proces8 using the linearized soluh”on a8 the jrd step.

For plane Jow it is found that a particular integral of th

;terak”on equation can be wm”tten down at once in terms ?f the
jht-mier 8olution. Zie second-order pmblern ia thereby
wiumvi to an quident fir8t-order problem and can be readily
.Voked. .-Uthe sq%ce of an isolated body, the 8olution reduces
to the well-known result of Bugemann. The plane case i8
considered in 8ome detail irmqfar a~ it gire.s insight into the

nature of the itemtion proces8.
.lgain, for axially w~mmekicjow the problem ti reduced to a

find-order problem by the di$corery of a particular integral.
For smooth bodies, the ~econd+wdersolution can then be cal-
culated by the method of con Kdrmdn and Moore. Bodies
with corners art? also treated by a 8~ightm.odifieation of the
method. The second-order .dution for cones repre8ent8 a
considerable improremerd ocer the linearized reauit. Second-
m-der theo~~ ako agrees uW1 uWL sererd 8olution8 for other

bodies qf rero[ution calmdated by the numerical method of
cha racteristic8.

For f uil three dimensional $OW, only a partial particular

integral haa been found. A an example of a more general

probkn, the solution is da-iced for an inclined cow. The
powribility of treating other inclined bodies of resolution and
threedimeneional m“ng8 is di8cu88ed briefly.

liiTRODUCTION

.is the Iinewized theory of supersonic flow approaches fulI
development, the question arises whether more esact approx-
imations are practical. If viscous effects are large, refine-
ment of the perfect-fluid solution is impractical. If viscosity
is negligible, however, h@er approximations are known to
yield a closer approach to realit}-. In intermediate cases,
un improved soIution is dssirabIe in order to assess the
relative effects of viscosity and nonlinearity.

The protot.}-pe of a higher-order solution for supersonic
flow- is Busemann’s series for the surface pressure in pIane
flow past an isolated body. This simpIe resuIt is of con-
siderable value in analyzing supersonic airfoil sections.
Two terms of the series prove sufficient for ahnost aII require-
ments; the extension to third and fourth order is chiefly of
academic interest.

The aim of the present study is, therefore, to find a second
approximation. analogous to Busemann’s result, for super-

sonic flow past bodies which can be treated by e-xisthg
first-order theory. The natural method of attack, and
apparen tIy the only practical one, is by means of an iteration
process+ taking the usual linearized result as the fit step.
Several titers have applied this procedure to two-dimen-
sional subsonic flow. h supersonic flow, as USUZI, the
soIut,ion is simpler, so that more general problems can be
solved.

This paper is based upon a thesis for the clegree of doctor
of philosophy in aeronautics written at the California
Institute of Technology under a Sational Research Council
predoctorzd fellowship and under the guidance of Prof. P. A.
LagerStrom (reference 1). h was published in revised form
as NACA TAT2200, 1951 (reference 2). The present version
has been further slightly revised, in particular to include ref-
erences to the recent literature.

ITERATION PROCEDURE

B.WICASSUMPTIONS

The probIem to be considered is that of steady three-
dimensional supersonic flow of 8 polytropic gas past one or
more slender bodes. AS indicated in figure 1, the kdies

are assumed either to be pointed or to extend upstream
indeflnit eIj- as cylinders parallel to the free-stream direction.
ID either case, the origin of coordinates can be chosen so
that aH variations in body shape are confined to the half-
space x>O. ‘(I%.KIaxes are introduced, so that for z<O the
flow is uniform and parallel to the z axis, with the fretwtream
velocity U and Mach number M. (For definitions of all
symbols, see the appendix. )

The bodies me sIenderj which means that at any point the
component of U normaI to the surface is smaII compared
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with U itself. ‘h symbol e will be used throughout as a
measure of this smdlneas. Thus the. ordinates of a body
will be w-ritteu as c times a function of order unity. Used
in this way, e serves to distinguish terms of various orders.

The aim of this investigation is to find a second approxima-
tion to the solution of problems for which the first-order
solution is available. The firek.orde.r, or Iinearizcd, solution
is defined as the result of keeping only Iine.ar perturbation
terms in the equation of motion. Similarly, the second-order
solution is the result of retainiig second-degree terms ,in
perturbation quantities. ln addition, however, certain of the
triple products arc in some cams found to be as important
as one or more double products and are therefore also re-
tained in the equation. It may be noted that the second-
orcler solution will not generally consist simply of terms of
order e and d, though this is the case for plane flow. For
twunplc, the se.cond-der solution for flow past a body of
revolution WN be found to contain terms as high as dim.

The flow is assumed to b.e irrotational and isentropic.
This assumption is justified in the first- and sccond+rder
solutions, since the resulting error is found to be at most of the
order of terms ncglcctwi elsewhere.

EXACTPERTURBATIONEQUATION

Under the assumption of irrotational flow, there exists a
velocity potcntlial Q. In Cartesian coo-rdinates, the equation
of motion is (reference 3, equation (39)).

(C2–!AW.+ (c’–n:)Q,,+ (C’–QWL,-

2Q,Q&.- 2QQQ.– xl$pzu= o (1)

Here the local speed of sound c is related to c-, its value in
the uniform stream, by

c2=c.~— q (Q,’+ fl;+fl:– P) (2)

where 7 is the adiabatic exponent. The subscript notation
is used to indicatu difl’erent.iation.

A perturbation potential @is now introduced in the usual
way. For convenience, however, @ is normalized through
division by the free-stream velocity so that

Q= u(x+@) (3)

The perturbation velocity at any point is then the gradient
of @multiplied by U.

Introducing the perturbation potential into the equation
of motion gives, after some manipulation,

O“r+ @u—/9%=r=
[

Jf2 -f-l~ (2%+ @:+@:+@:) (%.+

%+%) +2@JL+@.2@&?+ %%,+

*;@,. +2@r@,@vz+2@.(1 +@.)@=+

.1
2(1 + %)%% (4)

—.
where fl=~=

-,. ... ..

SOLUTIONBYITERATION

The exact perturbation equattion (equation (4)) is com-
plctJy equivalent to the originaI nonlinear potential oqua-
t,ion (equation (1)). Simplifying assumptions must thtwe-

fore be int.roduccd in order to solve it. lf iL is assumed
that squares and products of t.hc derivatives of * can be
neglected, the right-hand side of equation (4) disappoals,
leaving the wave (quation

@w(l)+%,(*J —/34=0) = o (5)

This equation is the basis of the limmrizcd or first-order
perturbation theory, and its solution is designakd by W.

More eiact solution of equation (4) by means of itt~ration
was first suggest cd by l’randtl (reference 4). ‘J’hcproccdurw
has been applied to plane subsonic flow by Gortkr (rcfcr-
encc 5), Ha.ntsclw and Wcnclt (references 6 and 7), Imai and
~yama (references 8 to 10), and Kaphu] (refwcnces 11 to
13). Schmicden and Kawalki (reference 14) applied tho pro-
cedure tti subsonic flow past an ellipsoid of rw-olution. Most
of these writers have considered the strcnm function ratl~w
than the potential, which restricts tho method to platm or
axially syrnme.tric. flows. The procedure is clearly dcscrilmd
by Sauer (reference 3, p. 140) for the cww of plane flow.

The linearized solution @(l), subject to proper boundary
conditions, is taken as the first approxirnat ion. Substi-
tuting this known soIution into tlw right-htmd side of
equation (4) gi vcs

om(~ +%(~ –fl%(~ =F,(z,y,2) (6]

where F’l is a known function of the indcprndent. wmifdics.
mk is again h linear equation, the nonhomogeneous wa w
equation. A second-order solution @(a, subject to. proper
boundary conditions, can be sought by standard methods.
The procedure can be rcpcatcd by substituting @~ into the
right-hand side of equation (4) and sol ring again, Con-
tinuing this process yields a sequence of sohtious @(*)
which, under proper conditions, pcrhnps converges to tho
exact solution.

A significant feature of this procedure is that in wcli step
the left-hand side of t.hc iteration cquaticm & th~ sumc. As
a consequence, the characteristic curves of each iteration
equation are just the hlach lines of the umlisturbcd ffOW.
Howevci, in actuality the local Marh lirws are. usually
neither straight nor parallel; thut isl the Aracterist.ics of
the original nonlinear equation are curved, in a manner which
is initially unknown and which depends upon t.hc sbapc of
the body. Because of the fundamental role played by t.hc
characteristics in the theory of hyperbolic equations (SCC,
c. g., rcferencc 15, ch. 5; reference 16, ch. 2), it might bc
anticipated that an iteration procedure should bo chosen
such that in each step the approximate Aaracteriet.ics
would be successively revised so as to a.pprmwh the ac h]al
characteristics. For purely subsonic flow, the counterpart
of such a procedure is known to converge under proper
conditions (reference 15, p. 288–289). Convergence might
reasonably be anticipated also in the case of purely super-
sonic flow.

Unfortunately, an iteration procedure in which the
approximate characteristics aro successively revised would,
except in the first step, involve equations with uom.onstant
coefficients. Thii would greatly. complicate the proccdurc.
Fortunately, it wilI be found thu~ the schernc adopted here,
which makes no provision for such revision, ne vertlwlesa
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gives an impro red solution mmrly e}-erywhere in the ffo~v
fieId.

SECOND-ORDERITERATIONEQUA’fTOS

IIenceforth, only the fi~t. two steps of the iteration process
will be considered in cIetaiI. In order to eliminate cmnber-
swne superscripts, it is therefore convenient to introduce a
simplifie(l notation for the first two approximations. The
tirst-order perturbation potential will hereafter be c!enoted
lJy p, and the stwond+rrler potential’ by #

~=@(l) ) (7)
~=~(a j

Introducing these quantities into the exact perturbatitm

wluation (equation (~)) gires the foIIowing second-order
iteration equation for @

4%,+ 4=– B24..=J12
[.

~+ (%.+ P2+W:+ W3)(w..+ %,+

<i:? + ~%%= + Pz%zz+ %2%?+ PZh +

1
_~,rZ+,Z+2w=(1 +P=)PU+2(l+~.)g, p,, (8),) e

Since q satisfies equation (5), the term (~z=+ *+ W=) k

the right-hand side of equation (S) can be repIticed by
M&, and the equation for @ becomes

[-
7 —1 MW*+W.2+%*+ %2)%+%+4. z-&$ ZX=-~~’ y

2K’#rr + 9.2P.. + PE*Pur + P.%..+

3W’Z$%+ %,(1 +%)$%+2(1 +P. )w’.v
1

(9.)

Here tile right-hand side contains not ordy double products
of p~rt.urbation quantities but also triple products. The
latter can be omitted for plane flow, since they ~wntribute
terms of smaller order (equal to those found in the nest.
iteration). Otherwise, certain of the triple products should
be retained because their contribution is as great as that
of one or more of the double products and greater than any
contribution from a third approximation. It wiIl be seen
later thut tripIe products should be retained if they invoIve
rml-y derivatives normal to the free stream. TripIe products
which involve z rlerivitives can be negkcted, so that the
iteration equation becomes

‘#u#+#Jz.-tW.z=-W [2+ (T– 1)-~f-%z%+%%+

z ~L~u+ ~H~vgn+2 PmYz~fiS+~z*~zz) (10)

Here the triple products which may be important are the
Iast- three terms on the right-hand size.

The adiabatic exponent 7 wilI be found to occur always in
the combination

-J,=(7 + I)J12——
~p2 (11)

~ H-. $ k remrdedMbefmthecovfde SWti-er Wmtld rathertbm (mh ref-
wences1and2)s snraffwrmctlontobeaddedWtheffrskfderwhufon.

Introducing this expression in place of 7 gives the final form
of the second+rder iterat io”nequation:

4,,+ &-19%u=-W2@’- llflv.pr.+zw,wz,+zwz~=+

%2PU + %wwu.+ PZ2PZZ (12)

~El?ATIOXEQUATfOSIN 0THE12COORDINATES

In cylindrical coordinates, equation (9) becomes

[
drr+$+$–p%==.~f’ ~i:~– ~)hW=+%P=r+2 $ W+

Yr2Yrr+2 ~ Pr6—9+’+$ W+

(

2
0 p.sp=, yr2yd ~p=t f$-’w p.p,pzr

)1

(13)

The terms whose form is indicated at the end of the equation
are the tripIe products which will be found to be negligible.

For conical flows it is convenient to introduce nonorthogo-
nal conicaI coordinates (z, t, 13)where

~=g
(14)

x

If the body itseIf is con.icd, the perturbation potentials are
reduced to functions of two variables by introducing conicaI
perturbation potentials (reference 17) so that

q(z, t, e) =.r;(t, 0) : (15)

with the same relations connecting @and ~. The iteration
equation (equation (13)) becomes

(17)

Here the grouping of terms cm-responds to that in equa-
tion (13).
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SOiJNDAItYCONDITIONS

Physical considerations suggest that the flow should satisfy
the following conditions:

Tangency condition: The resultant flow is tangent to the
surface of the body.

Upstream condition: All flow perturbations vanish every-
where upstream of the body.

These two requirements are suiliciont to determine the
solution. The first imposes one condition along the time-
Iike surface of the body, and the second may bc regarded as
imposing two conditions on a spacclike surface. This is the
case of mixed boundary conditions (reference 15, p. 172)
and lc.ads to a determinate solution (sea reference 16, p. 85).

The tangency condition may be written formally as

grad Q. grad S=0 at S=0 (18)

where S=0 is the cquatiou of the surface of the body. In
a more useful form it becomes, for the firsh and second-order
problems,

PC= (dope) (1+ P.) (on the surface) (19a)

4,= (slope) (1+4.) (on the surface) (19b)

Here & means the cross-wind component of the normal
derivative of @ at the surface of the body. In plane flow
d, is & and in axially symmetric flow +, is & The slopc of
t,hc body is measured with respect ta the free-stream
direction.

In first-order theory, the Lwgency condition is frequently
approximated by neglecting p. compared with 1 ti equation
(19a), which causes only a scmnd-order error. Correspond-
ingly, in the second-order tangency condition (equation
(19b)), & can be replaced by its fit-order counterpart w.
with only a third-order error. Thus the tangency condition
simplifies to

p,= slope (on the surface) (20a)

+,= (slope) (1+ %) (on the surface) (20b)

This approximation will not be made except for @ne flow.
Another appmsimation in the tangency condition can be

made for planar bodies, A planar body is one whose entire
surface lies near to a plane. parallel to the free stream, say
the plane y= O (reference 17, p. 52). Thin flat wings are
planar bodies, whereas slender pointed bodies of revolution
are not. For a planar body the first-order tangency condi-
tion can bc imposed at the plane rather tlum on the surface
of the body. Correspondingly, the second+rder tangency
condition can also bc imposed at the plane provided that the
difference in @Vbetween the plane m-d the surface of the
body is accounted for a.pproximately by retaining the second
term in its Taylor series e-mansion about I!=O. Further-
more, to first order p, is WVfor a planar body. Thus if the
surface of a phmr body is given by y= Y(z,z), the simplified
tangency condition is

%=l’z( l+%) at 11=0 (21a)

O,+ Yl#F,– Y*4.= Y.(1 +4.) at y=O (21b)

The term. containing & in equation (2lb) accounts for Lhc
fact that to second order the cross-wind componenL & may
not be vertical. Corresponding simplifications can be mmlo
for any quasi<ylindrical body, which is a body whose cutirc
surface lies near to a cylinder paralld to the frm stream.

Finally, the approximal.icm which lcd to equations (2o)
may be adopted in addition to that just discussed for phmur
systems, in which cuse the ttingency condition simplifies
further to

—

pfl= I’z at. y=o (22a}

@y= I’.(1 + %) —“17%+ l’.% at y=O (221))

The upstream condition implies thu.Lboth @tind ~z wmish
at the plane z= O, which completes the boundary conditions
required. For the first- and sccomlarder problems the
upstream conditiou is tlmrcfore

p=qz=() at x=O (23n)

+=+==() at 2=0 (23b)

DETERMINATIONOFPEESSUEE

When the potential field htw been dct.ermined, the net
velocity q at any poinL is given by

@=(u+u)’+#+d (24}

(25)

in Cartesian and cylindrical .comdinates, respectively. Be-
cause the flow is assumed to bc isentropic, t.ho pressure
coefficient is given by

where pm and pm are the free-stream pressure and dcmi t,y.
It is the practice in linearized theory also to simplify the

pre9aure relation. Substituting equation (24) into equation
(26) and ~panding gives

02+WS , ~ V’+W’ : 1:( @;yy+
—+fl’$+h~ ~ TJa0D=–2 ;– us

[ “3 “2 -’WF)’GPT’1 ’27)Op’p U2

All the terms shown here explicitly may give contribution of
second order; the remaining twrms whose. form is mmcly
indicated are aIways of higher order, In ]incarizcd theory
only tho first term is ordinarily retained. This is satisfactory
for plane flow or flow past phmar systems, since the contribu-
tion of the remaining terms is definitely of higher order.
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In fact, for plane flow ptist an isokted bo~~ it happens thnt
tflt? next two terms cancel i~enticall~.

For slender bodies such as a cone, how-ever, orders of
mugnitude me not so clearly distingukhed. Busemann
suggests (reference 18) that the second term, (&+@/~m,
is then stieiently large compared with the first that it
stlould be retained Ao. This view is supported by LighthiI1
[reference 19), -who shows that. the resulting solution is
{.(lrrect Up to t.h(, order of the quantities contributed bj- the
htW)IMl tWT1l. -Igain, the third term, fl%y~~~, which is alea
tllk’ square of a pmturhtition quantity, is comparable with
thtt second at high lIucL numbers (where Lighthill’s order
estimates become invalid) and might IogicaIIy be retained.
Iiti\-ing gone this far, it may be simpler to use the exact
rvhltion.

I+Ich of these four pmsihiiities for the first-order flow past
A 5° cone is compured with the exact solutiou (reference 20)
in fiiure 2. The series (equation (27)) is seen to alternate in
this case. It converges so slowly, howerer, that at moderate

3 Iach numbers (say, near .l~=l:~) where first-order theoqr
is most accumtc, linearizing the pressure relation introduces
mm+ greater errors than linearizing only the equation of
motion. -klding euch of the quadratic terms in turn causes
vlutng.es nearly as great as the error due directly to non-
lim’arlty in the equation.

The point of view to be adopted here is that calculating
tlw velocities and calmdat ing the pressure are two essentially

distinct operations. .&certain degree of approximation may
be necessary in order to solve for the velocities, but the
pressure relation need not t.heu be approximated to the same
extent simply for the sake of consistency. For it may happen
that. the resulting errors (though of the same mathematical
order) are greater than those due to the originaI approxima-
tion. Indeed, this is evidently the case at moderate lIach
numbem in the first-order soIution for a cone and will ye
found true to a greater extent in the smondarder solution.
XIoreover, in the second-order solution so many terms of
equation (2ij must. be retained that it is usually simplm to
use the exact relation. For these reasons, the exact pressure
equation (equation (26)) will be used throughout except in
the case of phme flow.

ROLEOFAPARTICULARINTEGRAL

The second-order iteration equation can be attacked by
standard methods, and in the case of plane flow a solution
can be found directIy. For phme and axially symmetric
flows, however, it wiII be founcl that w partimdar integral of
the iteration eciuat~on can be written (Iown at once in terms
of the first+rder solutiou. This solves the problem because
the complete soIution consists of a particular integral plus a
solution of the homogeneous equation, ancl the latter can be
obtained by e-xisting methods. That is, the second-order
potential may he writteu as

4=*+X (28}
There
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* is any particular integral of the nonhomogeneous iteration
equation
x is the complementary function which serves to correct the
hm.gcmcy condition

The. problem for x is the usual first-order problem for which
methods of solution arc assumed to be known.

The role of the particular integral is to transfer the non-
homogeneity in the problem from the equation, where it is
troublmorne, to the boundary conditions, where it can IN
handled by existing theory. For linear partial differential
equations it is always possible in principle to transfer non-
homogeneities in this way from the equation to the boundary
conditions, and vice versa, by adding a suitable function to
the dependent variable (see reference 21, p. 236).

Sinco the particular solution i wilI be found in terms of the
firskwder solution, it will vanish upstream of the plane x=O.
Then the complementary function must aho vanish there, so
that, the upstream condition for x is

X(O,Y,Z)=xt(o, y, 2)=0 (29)

From equation (19b), the ttingency c.omlit.ion for x is found
to b(?

*,+ X.= (S1OPC)(1 +4%+%) (on the surface) (30)

or, in the case of a planar bodygiveu by y= Y(z, z), from equa-
tion (22b),

4,+ X,=17, (1+ P.)– YP,,+Y’P. at ~=0 (31)

1Lshould be noted that, a.lt,hough @is of the same magni-
tude as w this is not necessarily true of either # or x done.

PLANE FLOW

The second-order solution for conditions at an isolated sur-
face in plane supersonic flow was given by Busemann (refer-
ences 22 and 23). By using the. iteration procedure., the
solution will now be found throughout the ffovr field, includ-
ing the case when severtd bodies interact,

The solution for plane flow is of interest chiefly insofar as
it serves as a guide in more complicated problems. In par-
ticular, it provides insight into such details of the iteration
process tis the question of its success and the effect of sharp
corners.

PARTICULAEINTEGRALFORPLANEFLOW

Tho first-order equation for plane flow is

Y,, – P%%.= o (32)

Tht’ general solution is

p(z,g) =h(z–fly) +j(z+l?y) (33)

where h and ~ aro functions determined by the first-order
boundary conditions. .

In the iteration equation, all triple products can bc. neg-
lected, and equation (12) becomes

@w–p’&=2i14’ [(N– 1)/92$%%.?+%9.,1 (34)

It can be vefied directly that a pm-titular integral of this
equation is given in terms of the first-order solution by

(35)

To this must be added a solution x of LIWhonmgcnurms
equation (equation (32) ), which has the form

X= II(z–#y) +J(x+#@) (3(3)

where H and J are functions dctcrminwl by t.hc sccon+ordcr
boundary condition.

For flow past a singlc boundary (such as one surfncc of un
airfoil) the first-order potent.itil (equation (33)) contains -
only one or tho other of the functions h Lnd j. In this crtsc

$%% =@’q.P.. so that the iteration equation rcduccs to

b- lwzz=2Jf2132~wzs (37)

The particular integral may then be simplified to

and the comphnentary function contuins only H or J,
according as the fit-order sohltion ron tains only h or j.

FLOW PASTACURVEDWALL

& an example of the application of the pnrt.iemhw solut ion,
consider flow past a wall which at some. point Iwgins to
deviate slightly from a piano (see fig. 3). The wall cm] bc
represented by

y= Y(z) =q(2) (39)

where c is a parameter smalI compared with unity and g(z)
is a continuous function of order unity which vanishes for
z~o.

This is a planar body, so that the kngcnv.y condition is
given by equation (22a). Consequently, the first-ordrr
problem is

pm—pzq== o

d~Yo)=@9’(~) 1 (40)

do, !/)=%(0, Y)= o

whore the prime indicates d-n tiation of g wiLh rcspcc~ to
its argument. The solution 1s

P = –; g(z –p~) (41)

Substituting this first-order solution inim tho right-hand
side of equation (37) girts the iteration cquat.ion

!
/
//y =x/p

/’//
//

I /’/ ,r-y-cg(x)

Fmuiut 8.–Flow pfat a carved wM.
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.4ccwrding to equations (38) and (36), the solution is

@=#+x_ J:;y .%f(x-IWl’+H(Z-IM (43)

Imposing
rnn(lition

so that.

:P

the upprosimate seconcf-orcler planar tangwcj-
(equation (22bj) gires

~1,(=)= ~,{ 2 –..I’X
~pz k’(~)1’–&i~)g’’(I) }

(44)

Tfle compl~te second-order perturbation potentiaI is therefore

The same result can be found by solving equation (42)
(~irectly, ~sing the impulse method (reference 15, p. 164).

Flmv quantities at the surface of the wall can be related
to their values at the plane y=o by expanding in Taylor
series and discarding terms in d. In this way the streamwise
vthcity pert m-but ion at. the wail is found to be given by

(47)

T1w pressure coefllcient at the wall can now be calculated
from equation (27) w+icb, upon replaring .l’ hy its value from
t!quation (1 1), gives

This is the well-known result of Busemann (references 22
and 23). To second order, the surface pressure coefficient
{lepends only upon the Iocal slope.

ROLE OF CHARACTERISTICS

It was pointed out previously that because of the under-
lying significance of the characteristics for solutions of
h.vpertxdic equations, it mighL be expected that the approxi-
mate characteristi~ of the iteration equation would have to
be revised successively at each stage. IIowever, an iteration
procedure was adopt ed which involv= no such retiion.
It is therefore pertinent to inquire in this simple example
whut roles have been pIayed by the actual and approximate
elm-act mist its.

The flow past a single cur-red walI is given (until shock
wav~ form) by a simple wave or distributed Pranr-ltI-X leyer
expansion. Of the tw*o families of characteristics, those of
primmy importance in a simple wave run downstream away
from the wall. }Te therefore confine uttention to that family.

For the first-order equation, equation (32), tha conven-
t ional theory (e. g., reference 15, ch. 5; reference 16, ch. 2)
shows that the characteristics of the downstream family
tire the lines of slope

(49)

This means that to first order the actual characteristics are
approximated by the Xlach Iines of the undisturbed flow.

For the second-order solution, a closer approximation to
the characteristics could easily be found. It can be shown
that if the first-order streamwise perturbat ion velocity at any
point. in the flow is U(*), then the rerised loed vaIues of
31ach number and P are approximately a

[
M(’) =lli 1 +@(.X-

1
1) g (50a)

[ 1
/9’”=.JH=/3 l+ M’(.Y -1}u; (50b)

~ombining this result with the fit-order solution (equation
(41)) shows that the retied XIach lines have the slope

(51)

However, because the iteration scheme adopted does not
allow for such retision, these are not actually the character-
istics of the second-order equation. Instead, the character-
istics of equation (42) are still the or@nal X[ach Iines of the
undisturbed flow.

Physically, the characteristics are Iines along which
d~continuities in velocity derivatives are propagated, and
this definition is completely equivalent to the mathematical
one (reference 15, p. 297j. Therefore, in the second+rder
solution given abo~e, discontinuities in acceleration w-iII
occur aIong the original characteristics rather than, as they
more properly should, along the revised characterist its.

Suppose, however, that no such discontinuit.ies occur.
For flow past. an isolated body the downstream character-
istics are also Iines along which the velocity is constant,
provided that shock waves do not appear. Setting

d&=&dx+4ady=0
d(jH=4qdx+r#Mdy=0 }

(52)

it is seen that the velocity is constant if

dg
&=–e=–z (53)

For the second approximate ion (equation (46)) the veIocity
is constant aIong lines of slope

(54)

which, accordi~m to equation (51), are the revised character-
istics. Consequently, although the characteristics have not
been retised in the mathwnatid sense, the solution behaves
physically as if they had, so long RS discontinuities do not
occur. The question of discontinuitiea wilI be considered in
the next section.

The connection between the original and retied character-
istics can be interpreted physically. The r@t-hand side of
the iteration equation may be regarded as representing the

s.!sLmplhdby the srrpet%dpL tk zre regarded as rlrzt-order vahez,bmue theyare
determhredfromthefirst-eidersrhtkm. Fromthizphrt ofvfew,Mwt d arezerc-der
qrlanfftleb
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effect of a known distribution of supersonic sources tluwugh-
out the flow field. The influence of this source distribution
spreads downstream along both families of original character-
ishic.s. The resulting velocity changes are just such that to
second order tlw velocities become constant along the
revised rathtw than the original characteristics.

FhMlly, it is interesting to note that the sccoudarder
potentiaI is constant on lines which bisect the original and
revised characteristics. For, setting

d~=@&+&dy=o (55)

4 is found to be constaut along lines of slope

(56)

FLOW PAST A CORNER AND A PARABOLIC BEND

A simple case in which diacontinuities may occur is that of
f[ow ptist a sharp corner. The exact solution is known to
involve an oblique shock wave with attwdant velocity dis-
discontinuities for compression and a continuous Prandt.l-
hfeyer fan for expansion.

Denoting the tang~nt of the deflection angle by e, positive
for compression (see fig. 4), tk function g(x) appearing in
equation (39) is

{

o X<O
g(x)= (57)

z Xzo
Y

! ,/G’X/p

i ,/
.

._-–-_z._z
FmuEE 4.—Flow pasta comer.

From equation (46) the second-order perturbation potcntitd
is found to bc.

41=-;(Z-PY)+;(Z-BY) -+%Z (58)

to the right of the line z= Py and zero to the le.ft. (Jonse-
qucnt]y, in either compression (E>O) or expansion (6<0)
the swxmd+rdcr potential suffurs a discontinuous drop along
tlh~ hIach line from the corner, of strength proportional to
tlw distance from the corner. Such a discontinuity cm.not
bc admittml, which indicates that the iteration process faik
in this region.

In tho case of compression, the solution can lm corrected
hy analytically continuing the pmturbation potential up-
stream until it can be joined continuously to the free-stream
pot,e.ntiaI. (This is permissible since the line of discontinuity
is not actually a characteristic.) From the result of equation
(56) the juncture is seen to occur along the line from the
corner which bisects the upstream and downstream Nlach
directions, as inclicat ccl in figure 5. The acljusted juncture

corresponds to a shock wave, for it is known that an oblique
shock bisects the hfach liucs to a first appro.ximat.ion (refer-
ence 16, p. 354) i In the case of expansion, this typo of
correction cannot be justified since it would involve con-
tinuation of the free-stream potential across a true ch.mac-
terist.ic, Instead, a Prandtl-hfeyer fan must be inacrtcd.

/

FIGURE5,–Mnch Unes before and after adjustment of potentlel dkxttlmdty.

Evidently the iteration process is successful cxccpt within
an angular region of order ~lying near the hfach line from the
corner. In part.icular, the pressure. is given corrcctly every-
where on the surface of tlho wall.

It is erdighte.ning to observe that the alhwnative method of
iteration, in which the characteristics arc successively re-
vised, fails in the same region. The potential is doublc-
valucd over a fan-shaped region in the case of compression
and is left undefined over a ‘similar region in tho case of cx-
paru~ion (see fig. 6). The same artificial corrections are
necessmy to complete tho solution.

FIGT,RE6.-&mnd+rdor flow ~.t a mmer using revked chamcterhtim.

Consider next flow past a parabolic bend which is repre-
sented by

~=; ez~ X>o

From equation (46) the second-order perturbation
is found to be

Myjv+ 1)–3 ,Tz–py)s*NE~v(z–Pv)*
@=+-PY)’- fj/.32

.2 (60)

The potential and ako t.hc velocities are continuous, so that
the previous difficulties do not occur. The acceleration is
discontinuous across the original characteristic x=~g, which
in this” -case happel~ to be also a rcrriscd characteristic.
However, a ncw complication arises. lt is known tht, in
the exact solution for the compressive case, the c.huractw-
istics form an envelope, as shown in figure 7. Insiclo the
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cusp the potential is triple-valued (reference 16, p. 111), so
that a shock wave must be inserted. This envelope must
dso a-rise in the second approximation since the character-
istics are no longer paralIel. However, the second-order
potential given by equation (60) is single-valued, so that it

cannot predict the formation of an envelope. &ain the
iteration process fails in a part of the flow field.

It can be seen that the alternative iteration process, using
revised characteristics, will produce an envelope.

CONVERGENCE FOE PLkXE FLOW

The examples just considered indicate tlmt the success of
the iteration procedure should be carefully investigated. ~
step of an iteration process may be considered successful if,
in some sense, it significantly improves the Solution. In

Y

I
Y

Flt;f.x.x7.—Flnt-andsrcmd+rtkrlkwP@a rdu’abollcIwnd.

ptirticular, one is interest ecl in the success of the second-
order solution.

It should be noted tlmt a divergent process may be suc-
cessful for many steps and that, on the other hand, con-
vergence does not necessarily implJ- success. ln practice,
however, one wotdd expect a convergent process to be suc-
cessful. & used Iwre, success is a subjective notion, not
amenable to anal@. Consequently, only the convergence
of the iteration procedure can be considered in any detail.

Unfortunately, proofs of sufficient conditions for converg-
ence have not been obtained, even in the case of plane flow.
However, the precding examples suggest certain conjectures
regarding convergence. These will be stated and some argu-
ments for their plausibility u-ill be advanced.

For flow past a slightly curved plane viall represented by
g=q(z), the solution obtained by iteration us.@ the revised
characteristics is conjectured to con-ierge in any bounded
region adjacent to the wall, provided that

(al c is sufficiently small,
(b} g(x) is continuously dtierentiable.

If ~(x) has only a piecewise continuous derivative, the
(Yonvergmce holds except possibly in fan-shaped regions
springing from each corns-r, which iie near the original
X[ach iine and subtend tin angle of order E.

For the iteration process actually adopted, in which the
churacteristim are not revised, the first n steps are conjec-
tured to form part of a convergent process, provided that

t.a) Eis suflkiently small,
(b’) g(z) has continuous derivatives up to (n– 1) st order

if the potential is required, nth order if the velocities are
required.

If condition (b’) is satisfied only piecewise, the result hohis
except possibly in fan-shaped regions springing from each
corner.

In the 6rst case, condition (a] is necessary in order to
insure that, the solution be unique, as is clear from the exam-
ple of the parabolic wall. The prewdii examples also
show that condition (b) is necessary.

If the sufficiency of these tw-o conditions is assumed, their
connection with condition (b’) in the second case c& btI
illustrated by analogy with a mathematical model which
retains the essential difference between the two iteration
proceses; namely, that the correct characteristics are not
used in the method actually adopted.4 Consider the first-
order problem given by equation (40):

–oQn— %.r—

%(~!o)=a’(~) 1 (61)

q(o, y)=p.(o, y)=o

where we have taken B= 1 for convenience. The solution
(equation (41)) is

p=–cg(z-g) (62)

h’ovr we attempt to solve this problem using characteristics
which diner from the true characteristics by O(c). Thus
me consider the equivalent problem

qn—(l —6)q?==cq=

% (~, ~)=%’ (r) 1 (63)

p(o, y)=q=(o, y)=o

and sol~e by iteration. In the first approximation the
right-hand side is neglected, so that. the differential equation
becomes

qwa’–(l–E)p=(’)=o (64)

which has the solution, subject to the boundary conditions,

P (1)= _ eg(z—~1—cy) (65)

Substituting this into the right-hand side of equation (63)
gives the iteration equation for the second approximation:

r-)@w(~—(l —t)@=(*=—c*#’(x —\ l—cy (66)

Wing the impuIse method (reference 15, p. 16A) gires the
solution, subject to the boundary conditions, as

P m=_g(~–lmy)+ ; ~g’(x–lh-cy) (67}

But this is just the ~a~lor series expansion, correct. to O(#),
of the true solution (equution (62)). ~ubsquent iterations
add additional terms to the Ta~-lor series expansion. Hence,
despite the use of sIightly incorrect charact~ristics, the itera-
tion process converges to the correct solution. The connec-
tion behveen conditions (b) and (%’] is thus seen to be that
the existence of sufficientl}- many continuous derivatives
compensates for the fact that- the wrong characteristics
are used.

*TM modelw= ~~ed by Prof.C. E. DePrimad tbe CslllorxdaI@lfutenf
TeehncdoKY.
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AXIALLYSYFINIETRIC FLOW

Before discussing t.hti genera-l solution for bodies of revolu-
tion, it is convenient to consider the simple problem of a
cone. In this case the second-order soIut.ion can be found
directly. ‘he results will be useful in indicating which
triple products should be retained in the genera.] case.

FLOW PAsT A CONE

~onsider flow past a slender cone of semivertox angIe.
ttm-* 6, as shown in figure 8. The flow is conical ancl asially
s~-mmetric, so that. the iteration equation is given by equation

r

1
/

/t-l
/

/
/

/’//

\\ \\ \ \
\

FIGURE8,—FIow wst a mm.

(17) with @derivatives omitted. Including the boundary
conditions from equations (19a) and (23a), the first-order
problem is

z’ (0 ~(1–f~?’qt)+~= (68a)

The differential equation can be solved by using the int~~
grating factor tl&Z Imposing the upstream condition
(equation (68c)) gives the well-known result

?=–~(sech-’ t–fi~ (69)

which is understood to vanish except within the downstream
hlach cone, where tS 1. The tangency condition (equation
(68b)) is satisfied by putting

(70)

At the hlach cone (t= 1), aII velocity perturbations va.uish,
so that the fmst-order solution predicts no deflection of the
shock wave from the hlach cone (see rofcrence 16, p. 403).

~Substituting the first-order solution into tho iteration
(equation (17)) gives

and from equations (19b) and (23b) t.ho corresponding
boundary conditions are

‘;=~=() at t’= cw (71c)

Equation (71rt) can again l.M solved using the iutcgrnt.ing
factor t/~1 –t’. The various integrals encountered can l.w
treated by integrating by parts one or more t,imcs. Imposing
the upstream condition (equation (71c)), the conlpIeLc
conicaI scconcl~rder pc.rturbation potential is found to l.m

7
(N+ l)= SCCi-’t –+ B2A‘1;:)3’ +0 [d (scch-’ t)’]

(72)

From equation (16), the stmamwisc and radial velocity
perturbations arc

[
-& –B sech-l t+A2M2 (sech-l t)2–

Scch-lt
(N–l)m–

7
(N+ 1)–: /3’A ~. (73a)

—

‘#w constantB “

(7’31))

must be Odjusted so as to satisfy Lho tangt?ncy
condition (equation (71b)). In actual computation it is
easier to. adjust B numerically in exactly this fashion rat hw-
than to calculate it from the cumbersome exprcxsion which
could be written down. The pressure coefficient at any
point can then be calculated from equation (26),

The last term in the brackeL in equation (71a) is the triplo
product #?~’~,l which is retained in the i tcrat.ion equation
(equation (17)). Its retention is now justified by noting
that its contribution-the his-t term in equation (72)—is of
the same order as other terms near the surface of tho cone
(t=dc). ActualIy, it cent.ributcs a second term, which has
been neglected since it is at most of order &sech-I pg. It
can also be veritlcd that the other triple products, whose
form is indicated at the end of equation (17), arc in iact
negligible since they cent rilmte at most t e.rms of order
#(sech-l 13~)2. Consideration of a further iteration indicates
that a third approximation would add tmms of order
#(sech-’ Pt)s, which is greater than the twins just neg]cctcd.

The second-order result for surface pressure cocfflcicmt is
compared in figure 9 with Lhc exact solution (reference 20)
for cones of 5°, 10°, 15°, and 20° semivertox angles. Also
shown for comparison arc the first-order resuIts based upon
the exact iscntropic expression (equation (26)) for the pres-
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sure coefficient. The second-order soiution is seen to provide
a much better approsirnation throughout the range of
klach nurnhers up to the point at. vrtilch the ~lach angle
equals the cone angle, beyond which the pert urbat ion solu-
tions have no physical meaning.

SHOCK-WAVE POSITION FOB CONE

The solution for plane flow fails near the Xlach wave from
a corner, which suggests that the second-order solution for
the cone may Iikewise fail near the ~Iach cone from the
vertex. In the plane cass, ne~ertheless, a first approxima-

tion to the shock-wave position (and hence to the entropy
change) can be calculated from the vehxity perturbations
near the 1 lath ware. me now consider whether this is
true also for the cone.

It was noted before that first-order theory predicts no
disturbance at the lIach cone and hence no shock viave.
According to second-order theory the velocity perturbations
just behind the llach cone are (equations (73jj

(74)

—
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so that the perturbation is nornd to the Ivlach cone. Here
.4 (equation (70)) has been approximated by ~. From
cquat.ion (50b) the cotangent of the revised hl aeh angle
just behind the h~ach cone is found to be

p (’)=/9[1 –2ilf4N(fv-l)c’] (75)

The upward stream inclination there is approximately
(ul~),-1, so that the ilhch lines have the slope

(76)

NOW if this can be taken to be the slope also of the revised
characteristics just behind the shock wave, then the slope
of the shock wave differs from t.haL of the original hlach
cone bv

(77)

This problem has been treated rigorously by Lighthill (refer-
ences 24 and 25) and by Broderick (reference 26), who fmd
that actutdlv

(78)

wbicb is one and one-half times the preceding resuIt, The
discrepancy metma that the second-crder soIution fails near
the hlach cone. The nature of this failure and the proper
method of remedying it have recently been studied by Lwht-
hill (reference 25).

The entropy increase through a weak oblique shock wave
is proporLionaI to the cube of its inclination away from the
kfach lines. Consequently, the entropy rise through the
shock wave from a cone is O(e~z), as noted by L.igh thin
(referenee 24).

PARTICULAR INTEGRAL FOE AXIALLY SYMMETRIC FLOW

consider flow paat a body of revolution which is either
a alender pointed body with nose at the origin or one which
extends indefinitely upstream with constant radius a for
x~o (see fig. 10). The latter shape corresponds h the
external flow past a sharp-edged, open-nosed body with
supersonic flow at the lip. l’7ith alight modification the
subsequent development can be applied to internal fiow as

[
e-=,

,’

i r=R(z) ---(:’

i
‘,

~

—- —-— 1—-—-—-—.—-—
A

*X

FIGURE10.-l?]ow @ bfdh Of12VddOJ1.

well. The meridian curve can bc represenhxi in the first
CSSSby

r=li!(z)=cg(r) - X20 (7Q@

and in the second by

{

a Xso
r=~z)= (7N.)}

a + Cg(x) Xao

Here c is again a p&ameter small compared with unity, and
g(z) is a continuous function of order unity.

The first-order problem is

(80u)

(80b}

@(o,r)=q Ao,r)=o (80c)

The solution is known to be (referenee 27)

.... .. .

s
z-b

‘o&” F— f(x–@r coshu)du
o

(81)

The second form is useful for carrying OULdiffcrcntiat.ion,
after which tbe first form can be restored. The derivatives
which will bo required are

J
@,~-,‘z!

J
“ j’(z–dr Coeh U)du= – :-Br f(t)ft

Qa=—
0 ~(z- & fW”

(82@

U) cosh U dU=

./ (82b)

In carrying out the differentiation the fact has been used
that j(b) =0 for a body with finite slopo. with coordinates
as shown in figure 10, tho lower limit of integration t is O
for the pointd body and –flu for the semi-infinite body.
The function j(z) may be intapreted physically (aside from
a numerical factor) as the strength of a supersonic line source
tdong the z axis. It is determined by the tangency condition
(equation (80b)) which gives tlm following integral equation
of the Volterra type for~:

J

z-@RCr) (X– W’(WE ,. .. ..-.
0 ~(z — &)*—l?*17*(z)=

[sz+R(z)
Z?(Z)R’(Z) 1– f(OU

J(z– ~y–/3’lP(z)“1 (83)

The second-order iteration equation is found from equa-
tion (13) to be

@rr+$ – P2&r= J42[W-— 1X%$%+ %$%+9,9!%+

O(!o,%kz,p,%%, %%%)] (84)
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The solution for the cone suggests that the terms indic~ted
at the end of the equation are negligible.

It w-ill now be shown that a particular integral of this
equation is gi-ren in terms of the first-order sohtion by

(85)

The first group of terms contributes the first two terms on the
right-hand side of equation (84), as can be vefied by direct

substitution. The last term in equation (85) accounts for
the term P,zpr as follows:

(86)

-where repeated use has beem made of the fact. that p satisfies
equation (80a). The last group of terms consists of triple
products involving x deri~atives, which have already been
neglected in equation (84), so that the result is pro-red.

The complementary function x is a solution of equation
(80) and can be written as

using equations (82) the seconcI-orcIer tangency condition
(equation (19b)) is founcl to be

uiich is again a YoIterra integral equation.

METEODSOFSOLVEVGINTEGRALEQUA~ON

Discovery of a particular integral for bodies of revolution
reduces the second-order probIem to the same form as the
tit-order problem; namely, the solution of a J’olterra in-
tegral equation. Tarious methods of attacking this problem
are listed by Hayes (reference 177 p. 140).

An indirect method consists in assuming that the unknown
source strengths in equations (81) and (87) can be represented
by a few terms of a poI.pomiaI, for exampIe,

f(x)= c,x+cd+ . . . ●H%’ (89)

The resulting solutions were introduced in a more formal
manner by Hayes (reference 17, p. 38), who has discussed
their properties iD detail. The Erst term alone gives the po-
t entkd for the cone, (equation (69)). Additional terms give
the solution for simple families of shapes. However, the
method is not suitable for bodies having disconti.nuities in
sIope or curvature. Ckmsequent-ly, a more direct procedure
is desirable.

von Kfim&n first introduced an as-ymptotic solution of the
integral equation (equation (83)) which has come to be

known as the slender-body approximation (reference 27).
For slender bodies, the source strength j(z) appearing in
equation (81) is found to be approximately proportional to
the rate of change of cross-sectional area. Thus

f(z) + -g [Tl?--y.r)]=R(r)R’(@ (90)

+

Lighthill has shown (reference 19) that if R(r) and its first
two derivatives axe of order e and R’ is continuous, this de-
termination off(x) is correct to the order of terms retained
in the first-order soIution. For purposes of the seoond-order
solution, it can be shown that ~(x) may be detmrnined in th~
-ray only if the first four derivatives of 1? are of order e and
R“ is continuous. This means that the body must- have
continuous curvature, which is a severe Iimitat ion. hlore-
over, the slender-body approximation is found generaIIy to
cause unnecessary 10ss of accuracy even though the mathe-
matical order estimate of the error is smslI. Consequently
this approximation should be avoided if possible.

The most satisfactory way of solv-inggthe integral equations
is to use a step-by-step numericaI procedure. In firstirder
theory the usual method, introduced by Tori K6rm6n and
Afoore (reference 28), is to assume that the unknown source
distribution can he approximated by a polygonal graph.
This is equivalent to superimposing a number of conicaI
source lines of di.fFerent strengths, each shifted downstream
with respect. to its predecessm, as indicated in figure 11.
The latter tievipoint is more convenient for computation.
The strengths of the source Iines are determined in succession
by sat-isf.ying the tangency condition at a series of points on
the surface of the body. The detaiIs of this prodedure are
clearl~-. e-xplained in reference 3, page 77.

For purposes of a second-order solution, this procedure
must be modified in one respect. ITnIees the source dBtri-
butionj(z) actually has comers, it. must not. be approximated
by a poIygon. The reason ~ that. a corner corresponds
locfiy to adding n conical source line which would, according
ta the solution for the cone, produce false second-order dis-
continuities in velocity smd pressure across the lIach cone
from the corner. btead, the procedure must be carried out
using source lines of quadratic strength. The source strength
f(z) can then be appro.~at.ed smoothly so that false pressure
jumps do not occur. ~ single source Iine of this type repre-
sents the flow past a sLender pointed bod~ with a crisped nose
(see fig. 12), as is clear from the slender-body appro.ti-
matiori (equation (90)).
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METHOD OF SOLUTION FOR SMOOTH BODIES

The second-order solution will be described first for bodies
having continuous slope. kfodifications for treating sharp
corners will be discuwed in the next section.

The procedure is indicated in figure 13. The a-xis is
clivirkd into int ermds by choosing points with abscissas
f., at each of which a source line is to begin. Good accuracy
is usually obt sine.d if the interval length is not greater than
@ times the Iocal radius. The tangency condition w-Z be
imposed on the surface of the body at the points F’~, which
lie on the hfach lines from the points &.

d .—-— -

FIGLmE12–BodY formed by wwcc Une of quad] ntlc strength.
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For pointed bodies, the first-order solution is started with
a conical source from the origin which gives the proper
conical tip. This potential and the derivatives which are

(91)

Here I!70is the same as the A of equations (69) to (73), ~
being the tangent of the semivertex angle of the conical
tip. N’o such term is required for the semi-infinite body.

The subsequent procedure is the same for either body.
Quadratic source lines are started from each of the points
.s, &, and so forth, For the pointed body .$Ialso lies al the
origin, while for the Semi-infinite body it is at —pa. For

the nth such source line, the potent.ial and ils dcrivntivos

%t== — 2~n sech-’ r,

The coustants ~. are determined successively by imposing
the fimt-order tangency condition in turn at each of the
points F’m~l. From equation (80b), the condition is

(
&p~,=R’ l+ap~=~ at P,+l (93)

wherti the summation t)egins with n= O for the pointed body
and h= 1 for the semi-tinite body. In this way, values
of the complete first-order potentiaI P and ita first and second
derivatives are calculated at each of the points on the body.

The velocities due to the particular second-cmlcr integral
~ can then be cdcuIatcd at the same points. Differentiating
equation (85) gives

[ 1
A=W (q +MW)!W+4%+NWZ?) –; w,%.,

{
#r=-l@ (w+~rwr)qzr+q=I(~+ lM,+~rprr]–~q,*(p, +3r~,,)

} }
(94)

Finally, th(” second-order complementary function x is
determined by repeating the procedure used for p, finding
new constants such that the second-order tangency condition
is satisfied. ~ccord@ to equation (19b), the condition is

–R’( 1+#z+~X.=#r+5x%- ) at Pn~l (95)

The second derivatives of x need not be calculatccl.
The complet~ second-order perturbation ~clocitics arc

found as tho sums of the contributions from i and X. Thun
the pressure coefficient can be calculated at each point ~n
from equation (26).

TREATMENTOF BODIESWITHCORNERS

Suppose that the meridian curve of the body has a sharp
corner, which for convenience may be assumed to Iic on the
Nlach cone from the origin, as indicated in figuro 14. Then
the method of solution must be modKed for two rcasona.
In the fimt place, the intervals betwecu source lines would



.i STUDY OF SECOXD-ORDER SUPERSONIC FLOW THEORY 503

hare to be chosen extremely small in order to obtain an
uccurate first-order solution behind the corner. This clifFi-
wlt.y can be overcome by addi~m a new “scdution which causes
a sharp deflection of the streamlines. In the second placP.
t~ven if the first-order solution is determined exactly, the
sccond~rder solution cloes not yield the Busemann result
just behind the comer, as it should since the flow is locally
plane. This defect is remedied by properly canceling a

r

t .,/ r=z~p’

\ .
FM;I.EE14.– SO@ with corner.

{l-kcontinuity which arises in the second-order sotution at
the rorner.

These two modifications require special solutions of the
first-order equation which along the klach cone from the
origin have diecout.inuities in velocity in the first case, and a
discontinuity in potential in the second case. Such solutions
can be found by approximating to equation (83) in the vicin-
ity of the llach cone. Imposing the condition that there z
is only slightly less than 6R and keeping only leading terms
in the diierence r—dR leads to an .~twl integral equation
for the source strength. Inverting the integral equation
shows that a potential having discontinuous nth derivatives
results from a source distribution along the axis which is

S-* setting j(z) =Z”-* in equation (81)proportional to r
gives

‘his int eg-rd represents the analytical continuation of the
h~-pergeometrnc function, so that, except for a constant
ftwtor,

where a is the radius at the corner. The potential is under-
stood to van iah except tithin the downstream 11ach cone
from the origin. The hypergeometric functions occurring
here can all be expressed in terms of complete elliptic
integrals with real rnoduli.

In the first-order solution, a sharp deflection of thti st.ream-
liies at a corner is produced by adding a multiple of the
potential which has discontinuous first dwivatiws. This is
found by setting n= 1, -which gives

(9s)

Here t is the conical variable introduced in equation (14),
and K and E are the complete elliptic integrals of the first
and second kinds with modulus k= [(1 —t)/(1 +t)]l~z.

From the tangency condition (equation (80b)), it can be
shown that. in order to account for the corner the solution
given by equation (9s) should be multiplitwl by

(~b’–~a’) [1 +(w.)11—.
#l+RT (99)

Here R=’ and Rb’ are the slopes of the meridirm curve just
ahead of and behind the corner and (q.)= is the due of P.
ahead of the corner. ThtI firstarder solution can thereafter
be continued as described in the previous section.

The second clificulty noted before was that the second-
order solution is found to bc incorrect just behind the corner.
The proper method of treating this diffidty is to solve the
case when the comer has been sliiht~y rounded and then
pass to the limit of a sharp comer. However, the following
simpler procedure is found to g-h-e exartly the same result.

The partimdar solution 4 calculated from equation (85)
is discont.muoue along the ]Iach ~rave springing from the
corner. If the. discontinuity -ranishtill at the corner, the
solution couId subsequently be revised as in the case of
plane flow (see fig. 5). However, there is a finite jump in #
directly at the corner, m-hkh cannot be allowed. Conse-
quently, the correction potential x must involve an equal
ancl opposite jump. ii potential having such a discontinuity
is obtained by setting n=O in equation (97). Then

x— r–:\:&K 1

~dding a suitable muItiple of this potential cancels the dis-
continuity in #. The second-order solution can then be
continued as described in the preceding section. It can be
verified that thti pressure jump at the corner has then the
correct second-order value.

It is instructive to analyze the behavior of a corner from
another viewpoint. It was pointed out before that the right-
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hand side of the iteration equation can be considered to
represent the effects of a known distribution of sources
Lhl’oughout tllc flow field. In the case of a slightly rounclecl
corner, this source distribution wiIl be weak except l.wtween
the kIach lines from the corner. As the corner shrinks to a
point, the sourm inteneity ~viII increase in that region in
such a way that the total strength remains constant. In
the limit, the source distribution will beha.vc like a Dirac
fh4ta function along the hi ach line from the corner. The
particular integral for plane flow (equation (35)) takes
account of this impulsive function so that the correct solu-
tion is automatically obtained. In thu case of axially sym-
metric flow, however, it is clear that the particular integral
giveu by equation (85) misses the contribution of the im-
pulse. It is therefore necessary to correct this shortcoming
by adding th step-function potcmtia.1 given by equatiou
(loo).

COMPARISONWITHNUMERICALSOLUTIONS

The accuracy of the second-order solution for bodies of
revolution can be evaluakxl by comparison with examples
calculated using tho numerical method of characteristics.

The first body to be couside.rcd is a circular-arc ogive of
12%aliber radius of curvature foIIowed by a cylinder,
which has a half angle of 16.26° at the tip.

----- First order I
-—— Secxmd order

II
Method of choracterisficg: t

— In ferpob%d fvm refwence 29

.24

}

uSauerb method, vtwtici+yneglected _
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order solution has bum calculated for this body at a \Iach
rmmber of 3,24. This represents a severe teat uf tht’ mctho(l
becauye the 31ach anglo is then only 10 p(?rcenL grmtcr
than the tip cone angle. Internals were chosen such L11OL
the points ~m Iay ah 0.1, 0.25, 0.5, 1, 2, and 3.5 cdihcrs.
The p&sure distributions calculatw{ by firsb and sccond-
ordcr theory are compared in figure 15 with the results of
various computations by the numerical method of clmrnrter-
istics. Of the Iatter, the result obtaiued from t.lw interpola-
tion chart given hy Rossow in rcferencc 29 is bclicvcd to be
more accurate than the ea~lier Gcrma.n computations which
were f@ken from the summary report of rcferencc 30. 13x-
cept near the tip, the second-order solution Oawccs very
cIosely with the numerical results.

The.second body to be considered consists of a cone of 10°
semi-vertex angle followed by a cylinder. Thu character-
istics solution for this body at a hfach nurnbcr of 2.075 hus
been given by Liepmann and Lapin in reference 31. The
first- and second-order solutions” wore calculated beyond tho
corner using the modifications discussed iu the prcccding
section”. Figure 16 shows the shape of the body, the locQ-
tion of source Iincs, aud the pressure distributions cahwla t cd
by fkshorder thuwy, second-order theory, and the nwt.hod

-of characteristics, Again, the second-order results agree WCI1
with the characteristics soIution.

SERIES EXPANSION WITH RESPECT TO THICKN F*s

An alternative met.hoc! of solving tho exact pcrturbut.ioil
equation (equation (4)) by successive approximations is to
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resume that the solution can be expanded in powers of the
thickness parametei c. Thus the exact perturbation poten-
tial is vmitten as

(101)

Substituting into equation (4) and equat@ like powers of e
yields a sequence of equations

(1) (1) (1)
@,u+@=—fs*@==o

. . . . . )

which can be solved in succession. The first is a.=g the
usual Linearized equation. This method was appIiecl to phme
subsonic flow in references 6 and 12.

Schmieden and Kavra.lki first pointed out (reference 14)
that the power series asmuned here does not always exist,
even for phme flow. In general, terms of the form &ln*c
appear, beginuing with. dine. in the tbird-order soIution for
plane flow and in the second-order solution for axialIy sym-
metric flow. Furthermore, for a body of revolution only
even po~ers of E arise. Consequently, it is necessary to
assume a more gen.sml series of the form

for plane flow and of the form

(103b)
for axialIy symmetric flow.

On the basis of this assumption, Broderick has developed
u second-order solution for supersonic flow past slender
point ed bodies of revoluticm (reference 32). The analwysis
is rather Iengthy, since the simpEfication resulting from the
discovery of a pmticular integral does not appear. The
results are limited to shapes for which the cross-sectional
area is given by an antdytic function! or at any rate has its
fit four derivatives smaU of order e, and the first two con-
tinuous. This is a severe Imitation since, for example,
the two bodies discussed in the pretious section we not
admissible.

Broderick’s method .tielde the slender-body counterpart,
of the present second-order theory. Just as the uwud first-
order slender-body results can be deri~ed as asymptotic
forms of Linearized solutions, so Broderick’s second-order
slender-bocly results can be obtained by expanding the
present second-order solution in powers of t and in t for
small t and retuinii secondary as vreLl as leadiug terms.
The logarithmic t7EiEi ai%e from the series

The expansion will now be carried out for the case of flow
ptist a cone.

It is clear from equation (70) that the constant .4 in the
tit-order solution (equation (69)) is giwn approximat_eIy by

Substituting this due into equations (73a) and (73b),
expaud~m in powers oft and in t, and imposing the tangency
ccmdition (equation (71b)) shows that

[ -1

B=e2+e’ (2.342– l)hz ~–.lf~il’+ 1)–; + .-. (106)
/t?e

Then accorc@ to equation (73), the ~elocit~ perturbations
on the surface of the cone are

-!?—=E_●a [n.
. u ;+.””

(107a)

(107b)

Replacing Ar by its due from equation (11), the approxi-
mate pressure relation of equation (27) giws for the pressure
coefficient on the surface of the cone

CP=’2(+1)+

+,(z.;y –(5.M’–wn;+(7+l) $++M+;]+

‘[”w]
(108)

This is Broderick’s result (reference 32, equation (S1)).
This series is compared in figure 17 with the origimd form

of the second+rder solution which uses the exact pressure
reIation. I?or the most slender cone, the e.xpm.sion in series
causes only a moderate loss in accuracy. For more practical .
thicknesses, hovwrer, the espm%n reduces the accuracy to
such an extent that. for the cone of 20° semivert-cm angle
Broderick’s solution is inferior to the Erat-order result (with
the exact pressure relation), The reason must- be that the
iteration process itself converges more rapidIy than do the
subsequent e.spansions which are required to reduce it to the
slender-body series form. Hence terminat~m alI expansions
at terms of the order of those retained in the iteration procws
results in an unnecessary loss of accuracy.

THREE-DEWENS1ONAL FLOW

PAB’L’IALPARTICULARLVTEGRAL

It n&ht be hoped thit a particular integral, which so
greatly simpli&s the iteration for plane and axially symm-
etric ftoms, could be found for the general three-dimensional-
case. The mrious methods of exist~m firskorder theory
could then be applied imrnediat ely to the problems of second-
order flow past such shapes as inclined bodies of re~olut,ion
and t.lwee-dimensional rings.

~ part of such a particuhu integral is found at once, being
common to the two specifl cases. consider the three-
dimensional iteration equation (equation (12)), which may be
mitt en

f$w++z–mz= Jf@M92$7Az-39%z9= +%$wf-k%r+

%2PW+%Y.%Z +W%’z?) (109)



506 REPORT 10S l—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

.07- 1 I I

.06-
“*

.(?5 Exuct (referenti 20)
–– -–_ “Secondorokr

.04 -------- Secvd order expended in series —

Cp
,03

A
N -----

> _ ... ----
.02-

.-.—------------. . -- -1

..’
.0/

~,(al
23456789 /0 II /2

M

.50

i &“’ ‘“:”

I

I
.40 -;

I
I
I
I

/’

.“

..”

Cp
/ -

.-

.20

--!-. —-- --

./0

* (c)
/ 2 3 4

,.-.; ~-
1

.20 -

Cp

.

/0 ---- -------- -- -----

, :.du-= . . . . . . . . .

1
t

t
t

To :,
8

,’
.’ ._,

\
,

,’
,,”

.
,.’

.
\ -.. ----

----- ---
L

K

\
“Cp,40

..37
-— —-_— —

.20-

.10 .,

~ (d)

/. 2 3 4
M

M

(a) Semi-mrtex M@ 6°.

(0) Semi-vwtex angle 15°.

FJGWEE17.—Effectof expanding in wrke upon eeeondder pressureon a @me,

(M~fi-~crtexW@ W.
(d) Sem!-vmtex angle 22°.

It can be readily veticd that except for the term in IV and
the tripIe products (the last three terms) a particular integral
is given by

$*= M’q$?= (110)

which appears in both equations (35) and (85).
The iteration equation is thereby reduced to

It bus not been possible to find a particular integraI of Lhis
equation in terms of the first-order potential. The solutions
for plane and axially symmetric flow do not appe~r to suggest
a generalization. On the other hand, there is no assurance
that such an integral cannot bo found. ‘iThen the t.riplo
products are negligible, the right-hand side of equation (111)
vanishes for 7= —1 (~=0], However, investigation of the
previous solutions indicaks that the idea of here taliing

‘Y=—1 is not Legitimate.
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In the absence of a complete particular integral, the re-
duced iteration equation (equation (111)) must be attacked
by more conventional methods. In principle, it. is always
possible to find a particular integral of a linear nonhomoge-
neous equation with the aid of the fundamenhd solution
associated with the difTerential operator. For the t.bree-
dimensional wave operator -which occurs here, the funda-
mental solution is

.

whkh can be interpreted as the potential at any point
(z, y, z) Lying tilde the downstream Sfach cone from a unit
supersonic source at (f, q, rj. Ti7th the aid of Green’s
formula, it can be shown that a particular integral of

%+ h- lwk=~(w,z) (113)
is given by

where the int egrat ion extends throughout that portion of
the forward Mach cone from the point (z, y, Z) within which
F is defined.

In practice, the integration indicated in equation (114) is
generally not feasible. For example, even the simplification
of axial symmet~ reduces equation (114) only to a double
integraI of F’(z,r) multiplied by a compIete elliptic integral
of complicated argument-. Avoiding such integrals by dis-
corery of the particular solution clearly represents a great
simplification in this cases

In the following sections, one example of a three-dimens-
ional solution wiLl be gi~en, and the possibility of treating
other shapes wiII be discussed thereafter.

PLOW PAST AX INCLINED COSE

The proidem of a cone at an angle of attack ilhstrates the
use of separation of variables to reduce the three-dimensional
iteration equation to tractable form.

Two alternative coordinate systems are suitable for bodies
of revolution at an angle of attack. In wind axes the body
k incline{l, whfle in bed}- axes the stream impinges @n the
body obliquely. The latter system is simpler for first-order
problems and is probably better for the second-order solution
also. Howerer, wind axes will be used here, since otherwise
the iteration equations must be rederked.

To simplify the solution, it will be assumed that the angle
of attwk a is so smaIl that its square can be negIected. This
wilI gire a solution nonlinear in the body thickness but linear
in a, and will therefore 3ie1d the initial slope of the lift curve
correct to second order. The coordinate system is indicated
in figure 1S.6

JCompnrinr the two methods would lead to the emhmtion of dednlte Integrals Inroldng
mmrdete elltptio in@ra19, ~hich m@t be of some Lnterest.

c In pretious wrsiom of this work (references 1 and 21 an oblique tramformntton was aP-
plled wtdeb effeetirely unya- the eds of the body. Hower~, thfs addltioti hamformu%
tion k Men fourd to complkate ratbrr than simplify the mdysfs 2mI bm been omkted
hem

To this approximation the surface of the cone is given by

?’=R(X, I!?)= [E-a (l+EqCos 8] z (l15a)

i!= !r(fl)=fl [E–a(l+q Cos 0] (1 15b)

The first-order equation for the conical perturbation poten-
tial is giren by the left-hand side of equation (17):

(1 –t%it+:+~=o (116)

The solution required here is the sum of potentials for a coni-
caI line source and dipde (reference 3, p. 74) and has the
form

( )(

~
:=—A sech-%—~~ +C 17—

)
f sech-* t a COS e

(117)

1
! e-o

I -—. —-—-—

~G~E 18.-InclJnedme h wtnd 8re6.

From equations (16} and (19a) the tangency condition is
found to be

L%i=k-a(l +q Cos (?]0 +F–G’) at t=T (118)

Substituting from equation (117) and expressing values on
the cone in terms of their values at t= I%by means of Taylor
expansions, it is found that

(l19a)

According to equation (110), a partia-I particular integral
of the second+rder iteration equation is, in conicaI form,

[
C 33-tsec’h-’t–2~’– 1}t(sech-~ t)9 a COS 13 =

TO+ZYcos e (120)

There remains to soIre the reduced iteration equation given
by equation (111), which becomes

(121)
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This is reduced to t~vo total cliffcrcntial equations by setting

~(t, e)+(t) +&(t)a Cos 8 (122)

Here & is associated with the axial component of the free
stream, and 71 wit]] the cross flow. The first of these is
known from the previous solution for the symmetrical cone
(equation (72)). The equation for the cross-flow term ~, is

Setting
?, (t)=tcd(t)

..W

(123)

(124)

nxluccs this to a linear first-order equation in w which can k
integrated to find that

(125)

The tangency condition separates into the two wnditions

Wi’+w)-+ (;I-E?J=19’O+-a(iL’’+&”)–

[1+(70+70)–$6’+-?0’)1 (126b}

The first of these is the previous rclat.ion (equation (71L))
which determined the constant B in equation (72). Sin~i-
larly, the second of these determines the cxmstnnt D in
equation (125).

SERIES E%.PANSIONS FOR PItE9SURE AND NOItMAL FORCE ON INCLINED
CONE

Numeried redts have been cdculatcd onIy for t.hc case
in which the so]ution is expanded in powcrs of tand Jn t (the
slender-body approximation). Carrying out the expansion,
the constant ~ is found to bo

[
D=213c2 I +2 M2e2h ;-(3WN+:),Z+...] (127,

-.

Then calctiating the velocity components from equn[ion
(117) and the pressure from equation (27) gives, on the
surface of the cone,

[(
CP=(C,)O–4C I –d M% g-~2 3 J@+ 1

)1
aC050+ . . .

(128)
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Here [t})O is the value for zero mngle of attack, given bj-
cquation (108). Integrating giws the normal-force coeffi-
cient. txmsd on crw.s~ectionfd area:

This result has been obtained also by L1ghtKlll (reference 33j,
who has calculated the lift on bodies of revolution having
untdytic meridian cur-res by assuming a series expansion for
the velocity potentiul.

Stone (reference ;M) has dereloped a solution for inclined
cones w~ch is linearized with respect to a, but otl.wwiae
{?xact. Kopal (reference 35) has published tables of the
numerical results of Stone’s theory. .A comparison of equa-
tion (129) with this exact theory and with Tsien’s first-order
Sohltion (reference 36) is shown in figure 19 for 5° and 10°
crews. The eadier discussion of series expansions suggests
that the agreement might improve if the solution were not
expanded in series.

SHOCK-WAVE POSITIOX FOR ISCL.HXED COXE7

Just behind the lIach cone the velocity components are

-(,:)t.,=;(;)t=l=2 M?NE4(1 –8pa Cos 6) (130)

For sirnplic.ity, using equations (119), -/i and C have here
bum approximated bj- c~and 2j?#. Compar@ equations (74)
am{ (77), it is seen that. if these were the velocities just
behind the shock wave, then the difference between the
shock-wave angle und the 31ach a@e would be

k–gin-’ +ApM2A’264(1 –Spa cos e) (131)
..

IIence the ratio of the angular rotation of the shock wave
to that of the cone w-odd be

Recently Lighthill has derived a simple expression for the
shock-wave position for any conical body lying inside
the lIach cone (reference 25). From his results it is found
that the preceding relation is incorrect, the correct expression
being again one and one-half times as large, so that

:=3(7 + 1)**C4=12M*(EA%4 (132b)

For moclerate cone angles thii latter result agrees well with
the exact ~ahles calculated by Kopal (reference 35) from
Stone’s theory. Again the discrepancy indicates failure of the
second-order solution near the JIach cone.

EXTENSIONS OF THE THEORY

Two important classes of problems hare only been touched
upon here. one is wings; the other, incIined bodies of
revolution. The problem of inclined bodies has recently

~Th~reltilmswereehenlucan!ectlyinreferences1 and 2.

been studied further in reference 37. The iteration equations
were there rederived in body rather than wind axes, which
simplifies the tangency condition. Again only a partial
particular integral couId be found.

The possibihty of discovering partictdar integrals of the
iteration equation might be investigated more systematidly.
If none can be found for general threediiensional flow,
special cases such as conical flow shouId be studied.

TREATMEXT OF WKSGS

One of the most useful applications of first-order theory is
to thin flat wings. For conical wings, the reduced iteration
problem can be transformed, by the standard conical theory
(reference 18), into the problem of salving Poisson’s equation
inside a circle. This case has recently been studied by
lIoore (reference 38), who has calculated results for the
nonIift”mg wing of triangular plan form lying tilde the llach
cone and of symmetrical wedge section. Although the two
extremes of the plane airfoil and the slender cone show that
compressi~e pressures are reinforced in the second approxi-
mation lIoore calculates a reduction for an intermediate
sweptback case.

Two dficulties can be anticipated. First-, if the wing has
subsonic edg~, intinite velocities arise there, so that the
assumption of small perturbations is violated. It is known
that in first-order thcwry this is no essential objection,
since the pressure is found correct.Iy except in the immediate
neighborhood of the singularity, and the integrated dues of
lift and moment are correct to &t order. Schmieden and
~walki (reference 14) and Kaplan (reference 13) have
indicated that this result extends to the second approximation
for subsonic flow, so that probubly no real difficulty exists.

SecondIy, if the wing Ims supersonic edges, the failure of
the iteration process along lIach lines from the apex can be
~xpected to affect the surface pressures. &ain it is possible
that integrated vaIues -wiII be correct to second order.
Otherwise, it may be possible to adjust the solution in those
regions, in a manner similar to that shown in figure 5.

HfGHERAPPEOSIMATIOXS

lt seems unIikely that third or higher approximation
would erer be justified. Other neglected factors, chiefly
viscosity and heat. conduction, should ordinarily be considered
tit. How-ever, the Busemann second+rder result has been
extended to third and e~en fourth order (reference 39),
and various writers have considered the third approximation
for plane subsonic flow (references 7, 9, anrl 11). If a third
approximation should be considered worthwhile, the iteration
could be repeated. Again the cases of flow past a cur~ed
wail ancl a cone -wouId serve as helpf uI examples.

APPLICATION TO SUBSOXIC FLOW

The iteration equation and the particular integrah are in
no wa}- restricted to supersonic flow. The particular solution
for plane flow might profitabl~- be compared with the sub-
sonic .soIutions of references 5 to 4.

Recently Kaplan has shown (reference 40) that. the par-
ticular integral for pIane flow (equation (35)] can be derived
forndy, using complex rariable theory, and has similarly
obtained the third-order pmticuIar integral. The latter is
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not applicalie to supersonic flow-except in special cases which
are free of shock waves.

The particular integral for plane flow has recently been
applied to several subsonic problems by Harder and Khu&er
(raferenccs 41 and 42).

The particular solution for axially symmetric flow makes
possible a second-order solution for bodies of revolution at

subsonic sped, In this case, the integral equation can be
treated by the methods used for the uirsbip probIem,

AMES AERONAUTICALLABORATORY
IYATIONALADVISORYCOMLiITTEE FOR AERONAUTICS
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SYMBOLS

constant reference radius for body of revolu-
tion

abscissa at which source distribution for body
of revolution begins

constants determined by boundary conditions
locaI speed of sound
constant coeflicien te of series
normal-force coefficient
pressure coefficient
complcte eIliptic integral of the second kind

with modulus k= [(l —t)/(1 +t)]lfg 9
source-distribution functions for body of

revolution
how-n right-baud side of (n+ 1) at-order iter-

ation equation
continuous function of order unity which

vanishes for z= O
arbitrary functions of one variable
complete elliptic integral of the first kinci with

modulus k=[(l —t)~(l +t)]112

()
freo-strea.m hfach number ~

a
y+ I Mi ..—..—..——

2 B2

Iocal static presswre
points on body of revolution at which tau-

gency condition is imposed
IocaI speed of flow
radius in cylindrical coordinates
radius of meridian curve of body of revolution
function d&ning surface of body

value of ton surface of body
perturbation velocity components

ian or cylindrical coordinates
free-stream velocity

in carte9-

Cartcsittn coordin~tcs with x in free-stream
direction

value of y on surface of planar body
angle of attack

adiabatic esponcnt
singular rotation of shock wave on cone due

Lo angle of attack
parameter small compared with unity
azimuthal variable in cylindrical coordinates
angle of shock wave from free-stream direction

(n)
@

x

#

#*

n
w

(n)
—

o
1
w

a

b
c

1.

2.

3.

4.

5.

,—

abscissa of origin of nth source line
local density
conical variable refereed t.o a=& as origin

rather than x= O
first-order (linearized) perturbation pobmtirtl,

same as @(’)
second-order pertturl.mtion potcntinl, same

as @‘o
exact perturbation potential
nth-order perturbation potenLial
n th term in series expansion of perturbation

potential
complementmy function for second-order iter-

ation equation
particular integral of second-order iteration

equation
partial particular solution for thrcc-dimcn-

sional flow
(See equation (110}.)

complete velocity potentitd
au..iliary variable

@ee equation (124).)

!WPERSCBIPTS

result of nth-order solution
value in conical form

(See equation (15).)

SUB9CEUPTS

associated with axial flow
associated with cross flow
fre~tream conditions
value just ahead of corner
value just behind corner
differentiation in direction of cross-wind com-

ponent of uormal to body surface
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